
Retinal_OCT_Scan_Classification_Beating_the_MedMNIST_Benchmark-
Project-Final

August 13, 2021

1 Retinal OCT Scan Classification - Beating the MedMNIST
Benchmark

Project Team: Laurin Ganser, Radu Diaconescu Emails: laurin.ganser@gmail.com,
radu.diaconescu@mars.uni-freiburg.de Course Coordinator: Dr. Ines Dedovic University College
Freiburg

2 About the Project

The MedMNIST dataset was published in 2020 to serve as a benchmark for neural network-powered
software that works with medical imaging recognition and classification. It includes 10 diverse sub-
sets, including tissue treatments, skin images and CT scans of various parts of the body. One of the
largest subsets is OCTMNIST, a dataset of roughly 100,000 optical computer tomography (OCT)
scans of human retinas; 25% are healthy retinas, and the other 75% are evenly divided between
three pathologies: choroidal neovascularization, diabetic macular edema, drusen. In our project,
we built neural networks that are able to recognize and classify such OCT scans with a satisfactory
degree of accuracy. While the reference/benchmark classification accuracies in the publication were
obtained using several large commercially-available high-performing neural nets, we show that it is
possible to build far smaller neural nets that are able to outperform the MedMNIST benchmark.

Structure 1: Getting Set Up
2: Data Prepocessing
3: Data Visualisation
4: Data Augmentation
5: Model Architectures
5.1: Small
5.2: Medium
5.3: Large
5.4: The Winner
6: Results
6.1: MedMNIST Benchmark
6.2: List of Results
7: Discussion

1

8: References
9: Annex: Mishaps

3 Getting Set Up

[2]: #Here we import the necessary libraries
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator

[3]: #This line of code gets the data we need from the zenodo page
path = tf.keras.utils.get_file('oct_retinal.npz', origin='https://zenodo.org/
↪→record/4269852/files/octmnist.npz?download=1')

[4]: #This piece of code separates the image and label arrays into the required␣
↪→subsets according to the preexisting dictionary of the dataset

with np.load(path) as data:
train_images = data['train_images']
train_labels = data['train_labels']
val_images = data['val_images']
val_labels = data['val_labels']
test_images = data['test_images']
test_labels = data['test_labels']

#Defines class names for classification
class_names = ['choroidal neovascularization', 'diabetic macular edema',␣
↪→'drusen', 'normal']

4 Data Preprocessing

[5]: #This normalises the image values to 0-1, which are the values Tensorflow␣
↪→expects

train_images = train_images/255.0
val_images = val_images/255.0
test_images = test_images/255.0

#This adds an extra dimension to the images; this is necessary because␣
↪→convolutional layers

2

#expect a minimum number of 3 dimensions for an image (the third one being the␣
↪→color channels)

train_images = np.expand_dims(train_images, -1)
val_images = np.expand_dims(val_images, -1)
test_images = np.expand_dims(test_images, -1)

[6]: #Convert the label arrays from the original format into a simple numpy array␣
↪→of values

train_labels = [train_labels[x][0] for x in range(0, len(train_labels))]
val_labels = [val_labels[x][0] for x in range(0, len(val_labels))]
test_labels = [test_labels[x][0] for x in range(0, len(test_labels))]

train_labels = np.array(train_labels)
val_labels=np.array(val_labels)
test_labels=np.array(test_labels)

5 Data Visualisation

[7]: #Visualize n random images from the dataset

HOW_MANY_VISUALIZE = 16

img_list = np.random.randint(97477, size=(HOW_MANY_VISUALIZE)) #takes n amount␣
↪→of random numbers from a pool

#that has the␣
↪→size of the dataset

fig = plt.figure(figsize=(12, 3*HOW_MANY_VISUALIZE)) #roughly scales the images␣
↪→according to n

#plots the selected images and their labels
for x in range(0, len(img_list)):

#ax[x] = fig.addsubplot(gs[x//4], gs[x%4])
plt.subplot(HOW_MANY_VISUALIZE, 4, x+1) #specifies place in multiplot
plt.imshow(train_images[img_list[x]], cmap=plt.cm.binary) #gets and plots␣

↪→image
plt.xlabel(class_names[train_labels[img_list[x]]]) #gets and plots label
plt.xticks([])
plt.yticks([])
plt.grid(False)

plt.show()

3

6 Data Augmentation

[8]: #DATA AUGMENTATION DEMONSTRATION
#Later, we will be using data augmentation on the fly during training. This part
#is a demo to visualize how changes in parameters produce new images.
#
#As a rule of thumb, for this particular dataset it's a bad idea to do large␣
↪→rotations,

#as this adds more noise than it does useful training data.

4

#This creates a data generator object that transforms images through rotation,␣
↪→shifting height/width, shearing, zooming,

#or horizontal flipping
datagen = ImageDataGenerator(
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')

#Display examples of transformations:

pick an image to transform
img_id = 220
img = train_images[img_id]
plt.figure(0)
plt.imshow(img, cmap=plt.cm.binary) #display original image first
plt.xlabel("original image")
img = img.reshape((1,) + img.shape)
i = 1

#Do transformations on the image and show new generated images
for batch in datagen.flow(img, save_prefix='test', save_format='jpeg'):

plt.figure(i)
plot = plt.imshow(image.img_to_array(batch[0]), cmap=plt.cm.binary)␣

↪→#display "augmented" data below original image
plt.xlabel("generated image")
i += 1
if i > 3: # show 3 images

break

plt.show()

5

6

7

7 Model architectures

8 Model architectures; Small

The model below is adapted from the simplest model we used for classification tasks. We first
created this to solve the Fashion MNIST task as one of our first experiments with deep learning.
None of its iterations have been able to beat the benchmark or even come close to it. Networks
with this architecture tend to hover around the mid 60%. We have tested out several variations of
this network and the results can be found under the header Results .

This model has the advantage of being very fast to train, with about 5 minutes per training session
it is quite easy to experiment with data augmentation, epochs, and optimisers on this network.

[9]: #This uses data augmentation in order to increase the amount of images it can␣
↪→work with

datagen = ImageDataGenerator(
rotation_range=3,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.001,
zoom_range=0.1,
horizontal_flip=False,
fill_mode='nearest')

#Create the model with two convolutional layers (32 3x3 filters each), and two␣
↪→dense layers with 64 and respectively 4 neurons

model = models.Sequential()
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape = (28, 28,␣
↪→1)))

model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(32, (3,3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(4))

#Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

#Train the model
model.fit(datagen.flow(train_images, train_labels), epochs=6)

Epoch 1/6
3047/3047 [==============================] - 42s 14ms/step - loss: 0.7720 -
accuracy: 0.7209
Epoch 2/6

8

3047/3047 [==============================] - 40s 13ms/step - loss: 0.5939 -
accuracy: 0.7931
Epoch 3/6
3047/3047 [==============================] - 39s 13ms/step - loss: 0.5397 -
accuracy: 0.8123
Epoch 4/6
3047/3047 [==============================] - 40s 13ms/step - loss: 0.5086 -
accuracy: 0.8227
Epoch 5/6
3047/3047 [==============================] - 39s 13ms/step - loss: 0.4825 -
accuracy: 0.8322
Epoch 6/6
3047/3047 [==============================] - 40s 13ms/step - loss: 0.4651 -
accuracy: 0.8385

[9]: <tensorflow.python.keras.callbacks.History at 0x7f2ed00faa00>

[10]: model.summary ()

Model: "sequential"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 26, 26, 32) 320

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 32) 9248

flatten (Flatten) (None, 3872) 0

dense (Dense) (None, 64) 247872

dense_1 (Dense) (None, 4) 260
===
Total params: 257,700
Trainable params: 257,700
Non-trainable params: 0

[11]: #Model evaluation
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=1)
print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 0s 3ms/step - loss: 0.7486 - accuracy:
0.6960
Test accuracy:

9

0.6959999799728394

[12]: #Export the trained model for future use
model.save (' Project_Model_Basic.h5')

9 Model architectures; Medium

Below is the set-up (neural network architecture + data augmentation) that we beat the benchmark
with. It has the performance advantage over the fashion model, but takes significantly more time
to train (>1hour on an average mass-market CPU).

Later on in the results section, this model type will be referred to as complex in contrast to the
basic fashion model.

[]: #Create the ImageDataGenerator object responsible for data augmentation
datagen = ImageDataGenerator(
rotation_range=3,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.001,
zoom_range=0.1,
horizontal_flip=False,
fill_mode='nearest')

#Create the neural net with 3 convolutional layers and three dense layers for␣
↪→classification

model2 = models.Sequential()
model2.add(layers.Conv2D(128, (3,3), activation='relu', input_shape = (28, 28,␣
↪→1)))

model2.add(layers.MaxPooling2D((2,2)))
model2.add(layers.Conv2D(512, (3,3), activation='relu'))
model2.add(layers.MaxPooling2D((2,2)))
model2.add(layers.Conv2D(1024, (3,3), activation='relu'))
model2.add(layers.Flatten())
model2.add(layers.Dense(256, activation='relu'))
model2.add(layers.Dense(128, activation='relu'))
model2.add(layers.Dense(4))

#Compile the model
model2.compile(optimizer='adam',

loss=tf.keras.losses.
↪→SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

#Set training parameters
BATCH_SIZE = 32

10

EPOCHS = 5

#Train the model; it does not receive the dataset directly, but rather receives␣
↪→through the

#dataset.flow function a slightly modified dataset at each epoch because each␣
↪→individual image

#is randomly slightly modified, thereby artificially creating a little more␣
↪→variation and

#avoiding overfitting. Data augmentation is only done for the training set. The␣
↪→validation data

#is fed into the model as is.
#
#The model.fit command does a lot of work here: it defines the number of times␣
↪→the model

#goes over the entire dataset to train; it shuffles the dataset at each epoch␣
↪→and

#groups it into batches to avoid overfitting; each image in a batch is slightly␣
↪→modified

#randomly using the datagen object (data augmentation), right before it is used
#for training. Therefore, while the model might see the same image 5 times if␣
↪→it is

#trained for 5 epochs, it will see the image slightly differently each time
#(e.g. a little zoomed in, a little tilted etc.).
model2.fit(datagen.flow(train_images, train_labels, batch_size=BATCH_SIZE),

validation_data=(val_images, val_labels), shuffle=True, verbose=1,
epochs=EPOCHS, steps_per_epoch=len(train_images) // BATCH_SIZE)

Epoch 1/5
3046/3046 [==============================] - 1052s 345ms/step - loss: 0.8205 -
accuracy: 0.6944 - val_loss: 0.6273 - val_accuracy: 0.7755
Epoch 2/5
3046/3046 [==============================] - 1031s 338ms/step - loss: 0.6283 -
accuracy: 0.7793 - val_loss: 0.5634 - val_accuracy: 0.8080
Epoch 3/5
3046/3046 [==============================] - 1044s 343ms/step - loss: 0.5524 -
accuracy: 0.8078 - val_loss: 0.5009 - val_accuracy: 0.8285
Epoch 4/5
3046/3046 [==============================] - 1055s 346ms/step - loss: 0.5168 -
accuracy: 0.8194 - val_loss: 0.5170 - val_accuracy: 0.8320
Epoch 5/5
3046/3046 [==============================] - 1056s 347ms/step - loss: 0.4920 -
accuracy: 0.8278 - val_loss: 0.5460 - val_accuracy: 0.8177

[]: <tensorflow.python.keras.callbacks.History at 0x1e7545217f0>

[]: model2.summary ()

11

Model: "sequential_4"

Layer (type) Output Shape Param #
===
conv2d_9 (Conv2D) (None, 26, 26, 128) 1280

max_pooling2d_5 (MaxPooling2 (None, 13, 13, 128) 0

conv2d_10 (Conv2D) (None, 11, 11, 512) 590336

max_pooling2d_6 (MaxPooling2 (None, 5, 5, 512) 0

conv2d_11 (Conv2D) (None, 3, 3, 1024) 4719616

flatten_4 (Flatten) (None, 9216) 0

dense_9 (Dense) (None, 256) 2359552

dense_10 (Dense) (None, 128) 32896

dense_11 (Dense) (None, 4) 516
===
Total params: 7,704,196
Trainable params: 7,704,196
Non-trainable params: 0

[]: #Evaluate the model
test_loss, test_acc = model2.evaluate(test_images, test_labels, verbose=1)
print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 1s 34ms/step - loss: 0.7658 - accuracy:
0.6910
Test accuracy:
0.6909999847412109

[]: #Save the model
model2.save (' Project_Model_Middle.h5')

10 Model architectures; Large

This last model architecture we experimented only briefly with because it was too bulky. It seemed
to overfit much more quickly than the previous model type, so we decided against it.

12

[]: # creates a data generator object that transforms images
datagen = ImageDataGenerator(
rotation_range=3,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.001,
zoom_range=0.1,
horizontal_flip=False,
fill_mode='nearest')

model3 = models.Sequential()

model3.add(layers.Conv2D(128, (3,3), activation='relu', input_shape = (28, 28,␣
↪→1)))

model3.add(layers.MaxPooling2D((2,2)))
model3.add(layers.Conv2D(512, (3,3), activation='relu'))
model3.add(layers.MaxPooling2D((2,2)))
model3.add(layers.Conv2D(1024, (3,3), activation='relu'))
model3.add(layers.Flatten())
model3.add(layers.Dense(256, activation='relu'))
model3.add(layers.Dense(128, activation='relu'))
model3.add(layers.Dense(4))

model3.compile(optimizer='adam',
loss=tf.keras.losses.

↪→SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

BATCH_SIZE = 32
EPOCHS = 5

#Train the model; it does not receive the dataset directly, but rather receives␣
↪→through the

#dataset.flow function a slightly modified dataset at each epoch because each␣
↪→individual image

#is randomly slightly modified, thereby artificially creating a little more␣
↪→variation and

#avoiding overfitting. Data augmentation is only done for the training set. The␣
↪→validation data

#is fed into the model as is.
#
#The model.fit command does a lot of work here: it defines the number of times␣
↪→the model

#goes over the entire dataset to train; it shuffles the dataset at each epoch␣
↪→and

13

#groups it into batches to avoid overfitting; each image in a batch is slightly␣
↪→modified

#randomly using the datagen object (data augmentation), right before it is used
#for training. Therefore, while the model might see the same image 5 times if␣
↪→it is

#trained for 5 epochs, it will see the image slightly differently each time
#(e.g. a little zoomed in, a little tilted etc.).
model3.fit(datagen.flow(train_images, train_labels, batch_size=BATCH_SIZE),

validation_data=(val_images, val_labels), shuffle=True, verbose=1,
epochs=EPOCHS, steps_per_epoch=len(train_images) // BATCH_SIZE)

Epoch 1/5
3046/3046 [==============================] - 1065s 350ms/step - loss: 0.7468 -
accuracy: 0.7283 - val_loss: 0.5426 - val_accuracy: 0.8179
Epoch 2/5
3046/3046 [==============================] - 1062s 349ms/step - loss: 0.5274 -
accuracy: 0.8181 - val_loss: 0.4544 - val_accuracy: 0.8458
Epoch 3/5
3046/3046 [==============================] - 1074s 353ms/step - loss: 0.4745 -
accuracy: 0.8355 - val_loss: 0.4865 - val_accuracy: 0.8323
Epoch 4/5
3046/3046 [==============================] - 1073s 352ms/step - loss: 0.4447 -
accuracy: 0.8449 - val_loss: 0.3740 - val_accuracy: 0.8670
Epoch 5/5
3046/3046 [==============================] - 1065s 350ms/step - loss: 0.4239 -
accuracy: 0.8510 - val_loss: 0.4584 - val_accuracy: 0.8444

[]: <tensorflow.python.keras.callbacks.History at 0x1e7010c5a30>

[]: model3.summary ()

Model: "sequential_5"

Layer (type) Output Shape Param #
===
conv2d_12 (Conv2D) (None, 26, 26, 128) 1280

max_pooling2d_7 (MaxPooling2 (None, 13, 13, 128) 0

conv2d_13 (Conv2D) (None, 11, 11, 512) 590336

max_pooling2d_8 (MaxPooling2 (None, 5, 5, 512) 0

conv2d_14 (Conv2D) (None, 3, 3, 1024) 4719616

flatten_5 (Flatten) (None, 9216) 0

14

dense_12 (Dense) (None, 256) 2359552

dense_13 (Dense) (None, 128) 32896

dense_14 (Dense) (None, 4) 516
===
Total params: 7,704,196
Trainable params: 7,704,196
Non-trainable params: 0

[]: test_loss, test_acc = model3.evaluate(test_images, test_labels, verbose=1)
print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 1s 34ms/step - loss: 0.8046 - accuracy:
0.6980
Test accuracy:
0.6980000138282776

[]: model3.save (' Project_Model_Large.h5')

11 The Winner

This is the model that we achieved our highest result with. The key difference from the above code
is the use of the nadam optimizer.

[]: # This is the original code we used.
datagen = ImageDataGenerator(
rotation_range=3,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.001,
zoom_range=0.1,
horizontal_flip=False,
fill_mode='nearest')

modelNA5 = models.Sequential()

modelNA5.add(layers.Conv2D(128, (3,3), activation='relu', input_shape = (28,␣
↪→28, 1)))

modelNA5.add(layers.MaxPooling2D((2,2)))
modelNA5.add(layers.Conv2D(512, (3,3), activation='relu'))
modelNA5.add(layers.MaxPooling2D((2,2)))
modelNA5.add(layers.Conv2D(1024, (3,3), activation='relu'))
modelNA5.add(layers.Flatten())

15

modelNA5.add(layers.Dense(256, activation='relu'))
modelNA5.add(layers.Dense(128, activation='relu'))
modelNA5.add(layers.Dense(4))

modelNA5.compile(optimizer='nadam',
loss=tf.keras.losses.

↪→SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

BATCH_SIZE = 32
EPOCHS = 5

#Train the model; it does not receive the dataset directly, but rather receives␣
↪→through the

#dataset.flow function a slightly modified dataset at each epoch because each␣
↪→individual image

#is randomly slightly modified, thereby artificially creating a little more␣
↪→variation and

#avoiding overfitting. Data augmentation is only done for the training set. The␣
↪→validation data

#is fed into the model as is.

#The model.fit command does a lot of work here: it defines the number of times␣
↪→the model

#goes over the entire dataset to train; it shuffles the dataset at each epoch␣
↪→and

#groups it into batches to avoid overfitting; each image in a batch is slightly␣
↪→modified

#randomly using the datagen object (data augmentation), right before it is used
#for training. Therefore, while the model might see the same image 5 times if␣
↪→it is

#trained for 5 epochs, it will see the image slightly differently each time
#(e.g. a little zoomed in, a little tilted etc.).
modelNA5.fit(datagen.flow(train_images, train_labels, batch_size=BATCH_SIZE),

validation_data=(val_images, val_labels), shuffle=True, verbose=1,
epochs=EPOCHS, steps_per_epoch=len(train_images) // BATCH_SIZE)

The model is found under the name Best_model.

12 Results

[30]: #This code block serves to demonstrate the accuracy of our models. We provide␣
↪→two

#models we have already trained in .h5 format.

16

saved_models = ["Nadam5(1).h5", "OCT-76-1-WITH-INPUT-SHAPE.h5"]

model_path = saved_models[0] #enter value 0 for the Nadam model (acc 76.6%) or␣
↪→value 1 for the Adam model (acc 76.1%)

model = tf.keras.models.load_model(model_path)

#This piece of code evaluates the model on the test data
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=1)
print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 1s 30ms/step - loss: 0.5922 - accuracy:
0.7660
Test accuracy:
0.765999972820282

[28]: #This shows the models performance on a given image

img_index = 923 #pick an image from the test set (1000 images)

prediction = model.predict(np.array([test_images[img_index]]))
predicted_class = class_names[np.argmax(prediction)] #takes the highest␣
↪→activation value of the network for that image and \

#chooses that as the predictied class

plt.imshow(test_images[img_index], cmap=plt.cm.binary) #plots the image
plt.title("Correct label: " + class_names[test_labels[img_index]]) #takes the␣
↪→label as specified and titles accordingly

plt.xlabel("Model predicts that this is: " + predicted_class) #takes the label␣
↪→that the model precits for that image

plt.grid(False)
plt.show

[28]: <function matplotlib.pyplot.show(close=None, block=None)>

17

13 MedMNIST Benchmark

The source for the following table is the MedMNIST website (https://medmnist.com/). The values
are the result of training neural networks with large pretrained convolutional bases on the same
image dataset we used.

[33]: img=mpimg.imread('InkedInkedBenchmark.jpg')
plt.figure (figsize = (20, 20))
imgplot = plt.imshow(img)
plt.axis (False)
plt.title (' Benchmark Accuracies:')

[33]: Text(0.5, 1.0, ' Benchmark Accuracies:')

18

As can be seen, the networks we provide beat the benchmark set at 75.8% by both achieving
accuracy scores of >76%.

14 List of Results

This list is supposed to serve as an overview over all the models that we have trained. We chose
to provide only two models in .h5 format - those that beat the benchmark - because of their large
filesize.

The conditions are: 1. Optimiser (Adam or Nadam) 2. n[Epochs] (for the Small model 5/10 and for
the Medium model 5/7) 3. Type of network (Small model, Medium model) 4. Data Augmentation
(True or False)

Conditions: Adam, Epoch = 5, Small, Data Aug. = True
Accuracy: 61.6

Conditions: Nadam, Epoch = 5, Small, Data Aug. = True
Accuracy: 68.2%

Conditions: Adam, Epoch = 10, Small, Data Aug. = True
Accuracy: 66.4%

Conditions: Nadam, Epoch = 10, Small, Data Aug. = True
Accuracy: 67.7%

Conditions: Nadam, Epoch = 5, Small, Data Aug. = False
Accuracy: 62.7%

Conditions: Nadam, Epoch = 10, Small, Data Aug. = False
Accuracy: 68.3%

Conditions: Nadam, Epoch = 5, Medium, Data Aug. = True
Accuracy: 76.6%

Conditions: Adam, Epoch = 7, Medium, Data Aug. = True
Accuracy: 74.7%

19

Conditions: Nadam, Epoch = 7, Medium, Data Aug. = True
Accuracy: 73.5%

Conditions: Nadam, Epoch = 7, Medium, Data Aug. = False
Accuracy: 72.4%

Conditions: Nadam, Epoch = 5, Medium, Data Aug. = False
Accuracy: 69%

Conditions: Adam, Epoch = 5, Medium, Data Aug. = True
Accuracy: 76.1%

15 Discussion

We have shown that it is possible to build deep convolutional neural networks with a low number of
layers (e.g. 3 convolutional and 3 dense layers) that outperform sophisticated available pretrained
networks such as ResNet-50 (which has 50 convolutional layers). It is true that the nets bench-
marked in the MedMNIST paper are general-purpose, while the ones we built are highly specific
to our application. But these results raise two interesting questions for both medical imaging /
diagnostic AI, and more generally for using neural networks in image analysis. The first is whether
it is worthwhile to build large, general-purpose neural nets, if a specialized tool might do a better
job and may be comparatively easy to build. The second question is to what degree a benchmark
such as MedMNIST is useful, given that, from our results, it seems reasonable to propose that the
best results, or cap on achievable accuracy in the results given by different architectures, may have
less to do with the networks themselves and more to do with the limited information that is implicit
in using 28x28 images. That may be the case in particular where the images are grayscale, such
as in the OCT dataset. Here, the usefulness of data augmentation techniques is also highlighted.
In all, our results display an interesting example of “less is more”, where it is possible, with low
computing resources, to build a useful deep learning program for medical image analysis.

References

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., … & Zhang, K.
(2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell,
172(5), 1122-1131.

MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image
Analysis. MedMNIST. (n.d.). https://medmnist.com/.

Nielsen, M. A. (2019, January 1). Neural networks and deep learning.
http://neuralnetworksanddeeplearning.com/.

Ruscica, T. (2020). TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners
Tutorial. YouTube. https://www.youtube.com/watch?v=tPYj3fFJGjk&t=16741s.

Tensorflow. TensorFlow. (n.d.). https://www.tensorflow.org/.

20

Yang, J., Shi, R., & Ni, B. (2021, April). Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis. In 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI) (pp. 191-195). IEEE.

Annex: Mishaps

Because we initially worked with models that do not contain the input_shape specifier in the first
convolutional layer, counting on tensorflow to sort that out, we discovered we would be unable
to load them from .h5 files due to the format that the Keras load function expects. We had to
manually reload the models into ones that do have an input_shape in order to be able to work
with them. To do that, we created an empty model with the exact same network topology, but
where the first layer has input dimensions (28,28,1) and then loaded the weights of the old model
into the newly generated one.

The code below serves to demonstrate how we rectified this issue. We are including it because it
was an interesting instance of troubleshooting.

[52]: #This model is an exact replicate of a model we have create and is only used to␣
↪→load the weigths of a pre-trained model into

Placeholder_1_model = models.Sequential()

Placeholder_1_model.add(layers.Conv2D(128, (3,3), activation='relu',␣
↪→input_shape = (28, 28, 1))) #Contains the crucial argument for being able␣
↪→to load the models

Placeholder_1_model.add(layers.MaxPooling2D((2,2)))
Placeholder_1_model.add(layers.Conv2D(512, (3,3), activation='relu'))
Placeholder_1_model.add(layers.MaxPooling2D((2,2)))
Placeholder_1_model.add(layers.Conv2D(1024, (3,3), activation='relu'))
Placeholder_1_model.add(layers.Flatten())
Placeholder_1_model.add(layers.Dense(256, activation='relu'))
Placeholder_1_model.add(layers.Dense(128, activation='relu'))
Placeholder_1_model.add(layers.Dense(4))

Placeholder_1_model.load_weights("Nadam5.h5") #Loads the pre-trained model

Placeholder_1_model.compile(optimizer='nadam',
loss=tf.keras.losses.

↪→SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

[53]: #Tests the accuracy of the model to see if the loading worked properly
#Benchmark_model_1 = tf.keras.models.load_model("Mishap_model.h5")
test_loss, test_acc = Placeholder_1_model.evaluate(test_images, test_labels,␣
↪→verbose=1)

print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 1s 34ms/step - loss: 0.5922 - accuracy:

21

0.7660
Test accuracy:
0.765999972820282

[54]: #This model is an exact replicate of a model we have create and is only used to␣
↪→load the weigths of a pre-trained model into

Placeholder_2_model = models.Sequential()

Placeholder_2_model.add(layers.Conv2D(128, (3,3), activation='relu',␣
↪→input_shape = (28, 28, 1))) #Contains the crucial argument for being able␣
↪→to load the models

Placeholder_2_model.add(layers.MaxPooling2D((2,2)))
Placeholder_2_model.add(layers.Conv2D(512, (3,3), activation='relu'))
Placeholder_2_model.add(layers.MaxPooling2D((2,2)))
Placeholder_2_model.add(layers.Conv2D(1024, (3,3), activation='relu'))
Placeholder_2_model.add(layers.Flatten())
Placeholder_2_model.add(layers.Dense(256, activation='relu'))
Placeholder_2_model.add(layers.Dense(128, activation='relu'))
Placeholder_2_model.add(layers.Dense(4))

Placeholder_2_model.load_weights("2Best_model.h5") #Loads the pre-trained model

Placeholder_2_model.compile(optimizer='adam',
loss=tf.keras.losses.

↪→SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

[55]: test_loss, test_acc = Placeholder_2_model.evaluate(test_images, test_labels,␣
↪→verbose=1)

print("Test accuracy:")
print(test_acc)

32/32 [==============================] - 1s 34ms/step - loss: 0.5723 - accuracy:
0.7610
Test accuracy:
0.7609999775886536

22

	Retinal OCT Scan Classification - Beating the MedMNIST Benchmark
	About the Project
	 Getting Set Up
	Data Preprocessing
	Data Visualisation
	Data Augmentation
	Model architectures
	Model architectures; Small
	Model architectures; Medium
	Model architectures; Large
	The Winner
	Results
	MedMNIST Benchmark
	List of Results
	Discussion

