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Introduction

Since the Paris Agreement in 2015, countries worldwide are striving to achieve ambitious
climate protection goals. The transition from fossil to renewable energies, including solar
energy, is an important part of achieving these goals. In light of the ongoing worldwide
growth of urban spaces, rooftop areas - both in urban and rural contexts - create a large
number of currently unused surface areas that have a large potential for providing
renewable, solar energy by photovoltaics. Identifying potentials can, especially in fragmented
neighbourhoods, be a massive challenge. With our project, we hope to develop an algorithm
that can identify single buildings and their solar suitability from satellite imagery without
further human intervention, thereby massively speeding up analysis processes.

Currently the most commonly used method to determine the solar potential of an area is
based on GIS (Geographic Information Systems), hence the analysis of map-based
geographical data. However, it is often dependent on the availability of high-quality surface
elevation data, and still requires relatively much effort, divided into multiple sub-steps
(Margolis et al., 2017; Martin et al, 2015). Machine Learning, on the other hand, applied on
satellite or aerial imagery, could promise a much easier solution: Imagery is often easily
available for most regional contexts, and far easier obtainable. With well-trained models,
even untrained personnel could one day perform solar potential analyses. Other projects
have successfully demonstrated that machine learning algorithms can be used to detect
roofs and classify their shape (Alidoost, et. al , 2018). Determining their solar potential
however proves to be more complicated as other factors such as solar radiation, the roof´s
shape orientation and shading. Lastly, social and economic factors of that region also need
to be considered. Due to these complications machine learning has been combined with GIS
in a previous study (Assouline et. al., 2017). To figure out how successful a project solely
relying on machine learning can be we wanted to develop a simple prototype for solar
potential analysis based upon building detection. Thus, our research could provide an
estimate of how simplistic solar potential analysis can get.

Materials and Methods

Solar Potential Analysis - An Overview

Machine learning (ML) has already been used to estimate the solar potential of a given area
in similar projects. In a 2017 study from Assouline et al., researchers have demonstrated
that machine learning in combination with GIS can be used to estimate the solar potential of



1901 communes in Switzerland by relying on so-called support vector machines (SVM). This
study also shows that multiple aspects have to be taken into account: the physical potential,
based on the total energy received as sunlight, the geographic or urban potential, reflecting
the constraints on the locations concerning the installation and use of solar panels, and the
technical potential, or the actual transformed electrical energy created using certain solar
panel technologies (Assouline et al., 2017). On the other hand, this project used
geographical data for analysis, and no images were used as source data.

There are also projects that have already successfully combined image analysis with ML to
detect buildings and determine roof shapes (e.g., Alidoost & Arefi, 2017). In this second
example, datasets containing several top-view images for roof classes were created
manually from an aerial image, and used to train two seperate networks: The first network to
detect and classify objects as buildings, roads or trees, and the second network to recognize
the roof´s shape (e.g., flat, gable etc.). A VGG-F architecture featuring 3x3 convolution- and
2x2 pooling-layers was used for the entire network. In execution, the model was able to
distinguish objects with an accuracy of 99,6%. Roof types were identified with 100% and
95,7% recall, and 98,4% and 100% precision based on two separate images, respectively.
Thus, machine learning can be a promising tool for roof detection and classification. In a
third project (Kumar, 2018) multiple edge detection algorithms were tested to detect
buildings on satellite images from India. The project concentrated on adaptive edge
detection and contours to segment rooftop boundaries for solar panel installation. After the
optimal roof shape was determined solar panels of three different sizes were placed on the
polygons and rotated to achieve maximal power efficiency. Notably, the project faced several
issues due to the low quality of satellite images in India.

In these three examples both the chances and problems associated with ML-based
approaches for photovoltaic potential analysis. In our project we aimed at implementing a
combination of the last two approaches, using machine learning to detect roofs and edge
detection to determine the rooftop polygon shape to calculate its solar potential. Ideally, our
model should be able to predict roofs from given aerial imagery, and feed these predictions
into subsequent algorithms for statements about the physical and technical potential of
individual roofs.

Model Description



Figure 1: Flowchart showing the model structure

ML architecture was taken from tensorflow core (Image Segmentation: Tensorflow Core)

We created training and test images by hand using the free-to-use image editing software
Krita. In total, 26 original images, originally obtained from Google Earth were used for the
project, and overlaid with masks for further processing. To expand the original image stock
into a format usable for Machine Learning, we processed all 26 original images by cropping
their sizes to 500x500 pixels, this allowed us to further expand our dataset as images could
be cropped into 4 subimages. These images were then mirrored and flipped and saved as
new images, this augmentation allowed a x4 x8 expansion of the original data. In total, the
process of image alteration resulted in a stock of 832 images with corresponding masks.



Training was then performed using a pre-existing U-Net model from Tensor flow. The training
was run for 20 EPOCHS before the predicted masks and model summaries were extracted.
These can be seen in the original code. The predicted masks were found to be rough and
lacking uniform edges. This is likely due to our relatively small dataset and that our masks
were not always perfectly annotated or inconsistently annotated which led to a lot of false
positives within the training data. To clean up the predicted mask we ran them through a
pixel filler loop which fills in holes and frayed edges within the predicted mask. Seeing as we
expect our roofs to be uniform with straight edges these allowed us to turn the blob-like
maks into more geometric shapes.

Figure 2: Pixel filling kernel

Here is a visual representation of
the kernel that we passed over
our predicted masks. When a
pixel is boarded by 4 or more true
pixels with value one that pixel
becomes one. If three or less true
pixels border then the pixel
remains 0. This means that the
overall footprint of the predicted
mask should not expand to a
great degree as they are confined
to straight and angular lines.

We also developed a second part for our algorithm that allows us to calculate roof area and
its associated solar potential based. For this, we used built-in contour analysis tools provided
in the computer vision library OpenCV that identifies the edges of successfully detected
buildings, calculates polygon approximations for their shapes, and allows to obtain further
insight into the shape and area of shapes found. As all images used were shown and used
in the same scale, the area detected within images could be scaled up and translated into
statements about their true area (in m2). The resulting building areas were further fed into an
additional algorithm that calculates how many solar panels would ideally fit onto the roof and
how much power generation capacity can be achieved with the panels. To calculate the
estimated annual power generation from a roof, the following equation will be used:

Annual solar power generation = ((Annual amount of Global Horizontal Irradiance * area of
panels) * Electrical loss index) * System capacity

Amount of annual Global Horizontal Irradiance (GHI) in Freiburg is derived from a dataset
provided by Solcast, a Sydney based company providing solar related actual and forecast
data (Solcast, n.d.). The electrical loss index indicates loss of electricity in the process of
DC/AC conversion, degradation of solar panel efficiency by mechanical and physical
reasons and other types of energy losses related to solar power generation. In our
calculation it is assumed that a system loses 27% of electricity (JPEA, n.d.).



The algorithm may derive the estimated amount of profit from a photovoltaic system. All
electricity generated from panels is assumed to be sold to the electricity market via Feed in
Tariff (FIT) scheme. Currently electricity from rooftop PV can be sold at the fixed FIT price of
0.0816 €-cts/kWh for 20 years in Germany. Thus, the annual revenue will be calculated by
multiplication of annual power generation (kWh) by the FIT price (Fraunhofer Institute, 2021).

Results

Model Predictions: accuracy 0.7285

Model Predictions: After running pixel filling



The model could have likely benefited from further training but in the interest of time and
memory we set the cut off to 20 repetitions. The training was more costly as we were using
higher resolution which showed a better result in early testing.

Discussion

In general, our model was able to correctly predict a majority of roof areas in given aerial
images. In around 70% of all cases, parts of an image were correctly identified as roof areas.
However, in about a third of all cases rooftops were not completely detected or there was a
high degree of false positives. Again this could likely be remedied by including further
training data and tweaking the U-Net parameters. While, for a prototype developed without
extensive knowledge, this result is more than satisfying, it might not necessarily suffice to
apply our model in real-world use. While we adapted our model a few times and tried
different configurations, we were unable to obtain predictions above an 80% benchmark.
While, for a first prototype, this is still a respective result, more complex models featuring
more layers or more complex model architectures might achieve higher results. In addition,
combinations with more complex colour channel combinations - as present in some satellite
images, or the preparation of model inputs using, e.g., colour filtering, might also lead to
better performances. Another potential improvement could be the inclusion of more
segmentation channels, such as road and greenspaces as this would help to weed out false
positives when training the model. Lastly, the quality of the masks we prepared using Krita
can also be viewed critically: Building masks sometimes lacked smaller details, or did not
differentiate between individual neighbouring buildings. While hard to estimate,
improvements in this regard could also have improved our model.



Apart from that, our project also shows several limitations, without which higher prediction
success or applicability for practical use would have been possible. To begin with, our model
was developed and trained only with 27 images, a relatively small number. Although we
expanded this image stock to more than 800 images to avoid overfitting, and ensure higher
prediction successes, a larger set of images might have yielded better results. In addition, all
of the images we used were - for the sake of convenience - taken within a single city,
thereby only representing only one specific context, and a single set of conditions
concerning lighting and colour. Our model will therefore be inherently biased in its
predictions. As an example, most roofs visible on test and training images are - as typical for
Freiburg - covered in brown or red tiles. Flat roofs with vegetation or concrete cover, as well
as other kinds of roof tiles, were therefore less likely to be detected.

Thirdly, our model’s functionality still is only on the level of a prototype, and not comparable
with the features or scope of more professional and complex models. While our goal was to
successfully recognize roof areas, we did not further differentiate the kind or shape of these
roof areas, or the orientation or location of individual roofs (compare, e.g., Alidoost, 2018,
Assouline et al., 2017). Shadows by neighbouring buildings or tilted roofs, for example, were
not taken into account. Therefore, our estimates are likely to lie above actual solar
potentials, as our model pays little attention to the geographical potential of roofs. In
addition, ideally a model like ours would not only take into regard one specific size of solar
panels, but several, and allow for a more realistic prediction of potentials. Lastly, we also
limited the model to the use of a single image scale. In consequence, our model is not
suitable for analysing larger geographical regions at once (see, e.g., Bodis et al, 2019).
Therefore, combining our simplified model with the approach of other authors, or developing
further features, might lead to more detailed, realistic, and practically useful predictions in
the future.

Conclusion

The aim of our project was to figure out how successful a simple machine learning approach
can be for solar potential analysis using satellite images. With an obtained accuracy of 70%
our study has demonstrated that satellite imagery can be used to estimate the solar potential
of a given area. Thus it can be used for the promotion and planning of more renewable
energy sources. However, due to significant limitations, such as the small train image set
and adjusted solar potential analysis, future research is needed.

Contributions

Each team member contributed  images to the used training set. The specific contributions
to this report will be indicated here: Introduction (Carla Mallmann & Felix Schachenmayr);



Solar potential analysis - overview (Carla Mallmann, Felix Schachenmayr); Model
description (Logan Poehlman, Felix Schachenmayr, Daichi Yoshioka); Results (Logan
Poehlman); Discussion (Carla Mallmann, Felix Schachenmayr, Logan Poehlman) and
Conclusion (Carla Mallmann, Logan Poehlman).
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